

Supported by

NSTX FY2011-12 Research Program Overview

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

J. Menard, PPPL

For the NSTX Research Team

NSTX FY2011-12 Research Forum Plenary Session Tuesday March 15, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Outline

- NSTX Mission
- Organization
- Prioritization
- Run Time Guidance
- FY10 Highlights \rightarrow FY11-12 Milestones and Priorities
- Forum Action Items for TSGs, Run Coordination

Forum web site: http://nstx-forum-2011.pppl.gov

NSTX Mission Elements

Understand/exploit unique ST parameters

- High heat flux for novel divertor and PMI studies
- Low A, I_i and high β , κ , v_{fast}/v_A for stability, transport
- Role of NSTX Upgrade:
 - Prototype methods to mitigate very high heat/particle flux
 - Study high beta plasmas at reduced collisionality
 - Access full non-inductive operation for FNSF applications

•Extend understanding of tokamak / ITER

Develop predictive capability for ITER/FNSF/Demo

Establish attractive ST operation

- Utilize ST to close key gaps to Demo
- Advance ST as fusion power source

Interface

Facility (PMIF)

Science Facility

(FNSF)

Pilot Plant

NSTX Topical Science Groups (TSGs) for FY11-12

- TSG responsibilities:
 - Assist program in formulation of milestones and priorities
 - Present research plans to PAC
 - Organize Research Forum by soliciting and prioritizing experimental proposals
 - Coordinate & review
 experimental proposals from
 TSG during run
- New TSG for FY11-12

	Run coordinator	Deputy run coordinator	
	S. Sabbagh*	M. Bell	
TSG	Leader - experiment	Deputy - experiment	Leader - theory and modelling
Boundary Physics	V. Soukhanovskii*	A. Diallo	D. Stotler
Lithium Research	C. Skinner	M. Jaworski	D. Stotler
Transport and Turbulence	Y. Ren	H. Yuh*	G. Hammett
Macroscopic Stability	JK. Park	J. Berkery*	R. Betti
High-harmonic Fast Wave, Energetic Particles	G. Taylor	M. Podestà	N. Gorelenkov
Solenoid-free Start-up	R. Raman*	D. Mueller	S. Jardin
Advanced Scenarios and Control	S. Gerhardt	M. Bell	E. Kolemen
ITER Urgent Needs, Cross- cutting, Enabling	J. Menard	R. Maingi*	A. Boozer*

* indicates collaborator

ITER/CC TSG will address urgent and cross-cutting research needs for ITER and for NSTX

- For ITER: Understand transport, turbulence, stability response to 3D fields informs decision on in-vessel coils in ITER
 - NSTX has new capabilities to address this: BES, ME-SXR, 2nd SPA
 - Research cross-cuts transport, boundary, macro-stability TSGs
 - ITER/CC TSG will coordinate research supporting ITER milestone R11-4
- Consider ITER urgent needs identified directly from IO, and other unique contributions NSTX can provide to ITER
 - ITER/CC TSG can/will forward proposals to other TSGs as needed
- For NSTX and NSTX Upgrade:
 - Assess methods and coordinate experiments for particle and impurity control for NSTX and Upgrade
 - FY11-12 goal: assess *combinations* of impurity control techniques
 - Support and coordinate cryo-pumping calculations for Upgrade
 - Coordinate ELM research (have coherent program, avoid overlap R. Maingi)

Dominant theme of TSG is particle and impurity control

Some programmatic considerations for XP prioritization

(in approximate priority order)

- Viability of proposal given available NSTX capabilities
- OFES Joint Research Milestones
- NSTX Research Milestones
 - Annual milestones + other ST high priority research
 - NSTX-Upgrade design needs expected high priority:
 - Particle and impurity control for long-pulse
 - Heat flux mitigation strategies high flux expansion, detachment
 - Upgrade diagnostic & facility design (high-k, cryo-pumps, LLD-2, NCC, ...)
 - Disruption diagnosis, characterization, forces, preliminary mitigation
- ITPA especially where NSTX is lead/prominent experiment
- Experiments leading to high-profile publications/presentations:
 PRL, Science, Nature / Invited talks: IAEA, APS, EPS, Sherwood, ...
- Career development: PhD thesis, post-doctoral research
- Any good idea generated during run potential 'break-thru'?

Run-time guidance for FY2011-2012 run

- Highest priority: OFES Joint Facility and NSTX Research Milestones
- TSGs should prioritize FY11 and FY12 XPs separately (into 1st, 2nd priority)

- TSGs **NOT** guaranteed to receive full allocation - will be decided at mid-run assessment(s)

Most important for near-term is to determine which XPs must run in FY11

Total weeks (FY11+12)	24										
Total days	120										
XMP - operational CC & enabling:	(estimated)										
Days for characterizing incremental Li introduction + possible boronization	2										
Control system development	3			PCS-related commissioning XMPs							
Mo tile performance characterization	2			Proportional RWM controller for 6 SPAs							
Calibration: magnetics, MSE, other	2			LQG RWM controller for 6 SPAs							
HHFW conditioning	4			Improved dZ/dt detector for vertical position control.							
Other XMP TBD	2			PCS V-nominal software upgrade for shape control.							
Program reserve	2			Checking the betaN controller upgrades for correct functionality							
Total XMP + reserve	17			Other new control jobs (snowflake, density control,)							
Days available	103					Priority 7	1 fraction:	0.75			
TSG	Milestones	FY11+12 1st + 2nd priority XPs (total)	FY11 run days already used	FY11 weighting (remaining run time)	FY12 weighting	FY11+12 1st + 2nd priority	FY11 1st + 2nd priority	FY12 1st + 2nd priority	FY11 1st priority	FY12 1st priority	FY11+12 1st priority
Advanced Scenarios and Control	R12-3	12	2.5	0.4	0.6	9.5	4.0	5.5	3.0	4	7
Boundary Physics	FY11 JRT, R11-3	16	2.7	0.7	0.3	13.5	9.5	4.0	7.0	3.0	10.0
ITER urgent needs & cross-cutting	R11-4	12	3.5	0.6	0.4	8.5	5.0	3.5	4.0	2.5	6.5
Lithium Research	R12-1	12	1.6	0.4	0.6	10.5	4.0	6.5	3.0	5.0	8.0
Macroscopic Stability	R11-2	12	0.6	0.6	0.4	11.5	7.0	4.5	5.5	3.5	9.0
Solenoid-free Start-up and Ramp-up	R12-2	12	2.5	0.4	0.6	9.5	4.0	5.5	3.0	4.0	7.0
Transport and Turbulence	FY12 JRT, R11-1	16	5.9	0.5	0.5	10.0	5.0	5.0	4.0	4.0	8.0
Waves and Energetic Particles	R12-2 (w/ SFSU)	11	1	0.4	0.6	10.0	4.0	6.0	3.0	4.5	7.5
Total		103	20.3			83.0	42.5	40.5	32.5	30.5	63.0

TSGs should solicit/develop XPs to support early FY2011-12 operation, obtain data for design of post-Upgrade systems

- Support and prepare for early FY2011-12 operations:
 - Assess performance of new Mo tiles impurity influx, thermal response, melting
 - Incremental introduction of Li for wall conditioning, small ELM scenario access
 - Early HHFW operations to assess coupling/heating with minimal lithium
- Data for design of post-Upgrade systems during outage:
 - Boundary Physics, Lithium Research
 - LiTER evaporation extrapolation to 5s pulses, choice of PFCs, cryo-pumping and next-gen LLD design, divertor diagnostics, fueling requirements and systems,
 - Transport and Turbulence
 - Design of new high-k system, other turbulence diagnostics
 - Solenoid-free start-up
 - CHI capacitor bank and voltage snubbing upgrades, new diagnostics
 - Waves and Energetic Particles
 - Assess 6 or 8 strap antenna, CAE and/or EHO antenna, EP diagnostics (SSNPA?)
 - Macroscopic Stability
 - RWM/EF control, NCC for RWM/RMP/TM/EFC/NTV/TAE/EHO, disruption mitigation
 - Advanced Scenarios and Control
 - rt-rotation, rt-MSE, control algorithms for J profile, particle and power handling

NSTX is addressing multi-scale transport issues critical to future devices – ITER and next step STs

- Low-k fluctuations decrease after transition to H-Mode
- Fluctuations increase after $H \rightarrow L$ back-transition

 New high-k scattering measurements show fluctuation levels increase at lower v*

•D. Smith, U. Wisconsin

0 NSTX

Transport Milestone R(11-1): Measure fluctuations responsible for turbulent electron, ion, and impurity transport

- High-k scattering measurements have identified ETG
- Low-k fluctuations (micro-tearing, ITG/TEM) and fast-iondriven modes, e.g. GAE, may also contribute to e-transport.
- Low-k fluctuations may also contribute significantly to momentum, ion thermal, and particle/impurity transport
 - Turbulence and *AE radial eigenfunctions will be measured with BES
 - Turbulence will also be measured w/ reflectometer, interferometer, GPI
- The k spectrum of the turbulence will be measured and correlated with energy diffusivities inferred from power balance
- Particle/impurity transport expts will use gas puffs, density measurements, low-to-high-k δ n measurements, edge SXR

NSTX has begun to explore stability impact of higher aspect ratio and elongation in preparation for Upgrade, next-steps

(III) NSTX

NSTX FY2011-12 Research Forum Overview (Menard)

Stability/Control Milestone R(11-2): Assess ST stability dependence on aspect ratio and boundary shaping

- Next-step ST designs commonly assume increased elongation (κ = 3-3.5) and aspect ratio A=1.6-1.7
 - Typical NSTX values: κ=2.4-2.8, A=1.4-1.5
 - Increased A and higher κ are projected to increase the growth rates of the n=0 vertical instability and n=1 RWM
- NSTX scenarios will be extended to plasma geometries much closer to those of the Upgrade and next-steps
- The maximum elongation, li, and sustainable β_N will be determined and optimized versus aspect ratio and elongation
- Comparisons to theory (MISK and VALEN for RWM) will be made, and the viability of present and new control techniques will be tested, and possible improvements identified

Obtained complete data-set for divertor heat flux width scaling to aid projections to ITER (FY2010 JRT*) and Upgrade

(D) NSTX

*Joint Research Target (3 U.S. Facilities)

- Divertor heat flux width, magnetically mapped to the midplane, shows a
 strong decrease as I_P is increased
 - Potentially major implications for ITER
 - NSTX: λ_{q}^{mid} further decreases with Li
- → NSTX Upgrade with conventional divertor (LSN, flux expansion of 10-15) projects to very high peak heat flux up to 30-45MW/m²
- Divertor heat flux inversely proportional to flux expansion over a factor of five
- Snowflake → high flux expansion 40–60, larger divertor volume and radiation
- → U/D balanced snowflake divertor projects to acceptable heat flux < 10MW/m² in Upgrade at highest expected I_P = 2MA, P_{AUX}=15MW

Boundary Physics Milestone R(11-3): Assess very high flux expansion divertor operation

- The exploration of high flux expansion divertors for mitigation of high power exhaust is important for
 - NSTX Upgrade, ST/AT fusion nuclear science facilities, Pilot, Demo
- High flux expansion "snowflake" divertor will be assessed:
 - Magnetic controllability especially up/down-balanced snowflake
 - Divertor heat flux handling and power accountability
 - Pumping with lithium coatings
 - Impurity production
 - Trends versus global parameters
- Potential benefits of combining high flux expansion with gasseeded radiation will also be explored

NSTX provides a unique environment to better understand the H-mode pedestal response to 3D fields for ELM control

ITER/cross-cutting Milestone R(11-4): H-mode pedestal transport, turbulence, and stability response to 3D fields

- The use of three-dimensional (3D) magnetic fields is proposed to control the H-mode pedestal to suppress ELMs in ITER
 - However, the mechanisms for particle and thermal transport modification by 3D fields are not understood
- Study possible mechanisms for modifying transport:
 - zonal flow damping
 - stochastic-field-induced ExB convective transport
 - − island shielding reduction as $ω_{e-\perp} = ω_e^* + ω_{ExB} \rightarrow 0$ (XGC0)
 - banana diffusion or ripple loss
- Measure pedestal turbulence trends vs. applied 3D field
 - BES, high-k scattering, gas-puff imaging
 - Independent control of n=1,2,3 applied 3D fields 2nd SPA (ARRA)
- Measure pedestal profile response, edge particle transport
 - Improved Thomson scattering, impurity injection, edge SXR

NSTX is a world leader in investigating pumping capability & plasma effects of Li - including Liquid Lithium Divertor (LLD)

- 4 LLD plates formed ~20cm wide annulus in lower outboard divertor
 - Heatable surface of porous molybdenum (Mo)
 - Loaded with Li by LiTER evaporation from above

LLD Impact on Plasma Performance:

- LLD did not increase D pumping beyond that achieved with LiTER
 - Assessing if LLD provides more sustained pumping than LiTER
 - Data indicates C present on LLD, which may have impacted pumping performance
- Operating w/ strike-point on LLD may decrease core C content
 - Strongest effect observed when plasma heats LLD surface above Li melting temperature
 - Interpretation complicated by ELMs in lower-δ shape
- No evidence of Mo in plasma except from large ELMs, disruptions
- Chemistry of Li on C and LLD critical, complex, and under-diagnosed

Lithium Milestone R(12-1): Investigate relationship between lithium-conditioned surface composition & plasma behavior

- With very chemically active elements such as lithium, prompt surface analysis is required to characterize the lithiated surface conditions during a plasma discharge
- In support of prompt surface analysis, an in-situ materials analysis particle probe (MAPP) will be installed on NSTX
 - MAPP probe will enable the exposure of various samples to the SOL plasma followed by ex-vessel but in-vacuo surface analysis within minutes of plasma exposure using state of the art tools
 J-P Allain, Purdue
- Li experiments will utilize MAPP to study:
 - Reactions between evaporated Li and plasma facing materials, residual gases
 - Correlations between the surface composition and plasma behavior, comparisons to lab experiments and modeling
 - Characterizations of fueling efficiency, recycling

Scenarios/MHD Milestone R(12-3): Assess access to reduced density and collisionality in high-performance scenarios

- The high performance scenarios targeted in NSTX Upgrade and next-step STs are based on operating at lower Greenwald density and lower v* than routinely accessed in NSTX.
- Strong D pumping via Li has been observed, but additional gas fueling is typically required to avoid plasma disruption during the current ramp and/or in the early flat-top and high- β phase
- Goal: characterize and avoid the underlying causes responsible for disruption at reduced density, including:
 - Loss of access to H-mode, locked-modes, β limits, double tearing, ...
- Possible methods for stability improvement include:
 - Changes in current ramp-rate (I_i and q(r) evolution), H-mode timing
 - Shape evolution, heating/beta evolution and control
 - Improved fueling control, and varied pumping

Coaxial Helicity Injection (CHI) has produced substantial current, and demonstrated significant ohmic flux savings

Time after CHI starts

2.5 ms

NSTX

Impurity Control Success

- Elimination of arcs in absorber region at top of vacuum vessel
- Conditioning of lower divertor
 - Inboard Mo tiles could aid CHI

- CHI synergy with OH extended in 2010 run:
 - Generated 1MA using 40% less flux than induction-only case
 - Low internal inductance ($I_i \approx 0.35$), and high elongation
 - Suitable for advanced scenarios

Also obtained new record 370 kA peak current by CHI alone

IAEA: R. Raman, B.A. Nelson U Washington

NSTX FY2011-12 Research Forum Overview (Menard)

March 15, 2011

Plasma Start-up Milestone R(12-2): Assess confinement, heating, and ramp-up of CHI start-up plasmas

- CHI initiated plasmas have been successfully coupled to induction and NBI-heated H-mode.
 - While these results are favorable, the confinement properties of CHI start-up plasmas have not been characterized.
 - CHI-initiated plasma equilibrium, confinement, and stability information is needed for projecting to Upgrade, next-steps
- HHFW and NBI heating of low-current ohmic targets was demonstrated in 2008 and 2010
- HHFW and early NBI heating will be used to:
 - Heat CHI \rightarrow OH discharges to assess confinement/heating vs. non-CHI
 - Heat and drive current progressively earlier in target plasma to assess non-inductive sustainment

Waves and Energetic Particle Research for FY2011-2012

- Understand, develop high-harmonic fast-wave for heating, CD 2010: HHFW generated 60% NICD at low $I_P \sim 300$ kA with $P_{RF}=1.4$ MW
 - Utilize antenna upgrade as tool for start-up, ramp-up, sustainment of advanced scenarios - e.g. HHFW heating of CHI+OH and CHI plasmas
 - Overcome/avoid problem of Li-compounds/dust on antenna
 - Improve resilience to edge transients (ELMs), understand edge power losses (surface waves, PDI) and NBI fast-ion interactions
 - Use HHFW as tool in NBI H-modes
- Develop predictive capability for fast-ion transport by *AE 2009-10: TAE-Avalanche induced neutron rate drop modeled successfully using NOVA and ORBIT codes
 - Extend *AE avalanche results obtained in L-mode to H-mode scenarios/profiles (BES + improved reflectometry + tangential FIDA)
 - Compare measured to predicted fast-ion transport M3D-K validation in support of ITER, NSTX Upgrade, next-steps

Forum action items for TSG leaders, proposers, run coordination

- Actively solicit input from the entire team experimentalists, modelers, and theorists – to develop an extensive but goalrelevant list of ideas and proposals
- Organize, listen, question proposal presentation and plans
- Develop a prioritized XP idea lists based on run-time guidance for use in planning FY2011-12 run
- Determine XMP topics and XMP run-time required to support high-priority XPs (see run-time guidance for initial XMP list)
- Forum summary session:
 - (Deputy) TSG leaders: Present brief summary of key experiments, full list of run time requested and allocated, ID any issues/problems, and provide prioritized lists of experiments
 - Run coordinator: Recap capabilities/milestones/run-time guidance, summarize # XPs and run-days requested, sketch out initial ops and first run-month, ID which XMPs/XPs need to be reviewed first

Backup

FY2011-12 NSTX research milestones

(base and incremental)

FY2010	FY2011	FY2012
Expt. Run Weeks: 15 w/ ARRA	4 10	10
1) <u>Transport & Turbulence</u>	R11-1 BES, High-k Measure fluctuations responsible for turbulent electron, ion, impurity transport	
2) <u>Macroscopic Stability</u> Assess sustainable beta and disruptivity near and above the ideal no- wall limit	R11-2 2 nd SPA, RWM state-space control Assess ST stability dependence on aspect ratio and boundary shaping (with ASC TSG)	Real-time rotation, 2 nd SPA, RWM state-space control, HHFW Investigate magnetic braking physics and toroidal rotation control at low v* (with ASC TSG)
3) Boundary/Lithium Physics	R11-3 Snowflake, MPTS, Lithium	R12-1 MAPP, BES, High-k, Lithium
Assess H-mode characteristics as a function of collisionality and lithium conditioning	Assess very high flux expansion divertor operation (with ASC TSG)	Assess relationship between lithium- conditioned surface composition and plasma behavior
4) <u>Wave-Particle Interaction</u> Characterize HHFW heating, CD, and ramp-up in deuterium H-mode		IR12-2 Tangential FIDA, BES, reflectometer Assess predictive capability of mode- induced fast-ion transport
5) <u>Solenoid-free start-up, ramp-up</u>		R12-2 CHI, NBI, HHFW Assess confinement, heating, and ramp-up of CHI start-up plasmas (with WPI/HHFW TSG)
6) Advanced Scenarios & Control		R12-3 SGI, Lithium, HHFW
7) ITER urgent needs, cross-cutting	R11-4BES, High-k, 2 nd SPAH-mode pedestal transport, turbulence, and stability response to 3D fields (cross-cutting with T&T, BP, MS)	Assess access to reduced density and v^* in high-performance scenarios (with MS, BP TSGs)
Joint Research Targets (3 US facilities): Understanding of divertor heat flux, transport in scrape-off layer	FY11 JRT MPTS, MSE-LIF Characterize H-mode pedestal structure	FY12 JRT BES, High-k Understand core transport and enhance predictive capability
NSTX NSTX FY	(2011-12 Research Forum Overview (Menard)	March 15, 2011 25

Operation with outer strike-point on Mo LLD (coated with Li) compatible with achievement of high-performance plasmas

Strike-point (SP) on inner divertor
 Carbon Z_{eff} = 3-4 typical of LiTER ELM-free H-mode

SP on LLD − T_{LLD} < T_{Li-melt}
 SP on LLD − T_{LLD} > T_{Li-melt} (+ other differences)

- Shots have different fueling, LiTER conditions, ELM characteristics:
 - No ELMs, no \rightarrow small, small \rightarrow larger
- LSN with SP on LLD reduces δ, κ, q • Reduces ELM and global stability
- Yet, can achieve high β_N , low Z_{eff} , P_{rad}
 - Would like to revisit operation on LLD in FY11
 - Supports consideration of inboard Mo tiles

ELMy H-mode combined with modest Li-wall conditioning can provide sufficient particle control for initial Upgrade ops

- ✓ NSTX long-pulse plasmas with ELMs approach density flat-top by t ~1s with n_e / n_{Greenwald} → 1
 - Modeling indicates n_e / n_{Greenwald} = 0.7-0.9 likely required for 100% NICD
- Carbon Z_{eff} = 2.5-3 acceptable, and will attempt to reduce further in FY11-12 research
- Radiated power < 25% of NBI power, which is acceptable

Improved D pumping required to access $n_e / n_{Greenwald} < 1$ operating scenarios – will be part of longerterm Upgrade research program

Progress in sustaining HHFW heating and current drive at low $I_P \sim 300$ kA (Use low I_P ohmic target to prototype heating solenoid-free start-up plasma)

TAE-Avalanche induced neutron rate drop modeled successfully using NOVA and ORBIT codes

- Toroidal Alfvén Eigenmode (TAE) avalanches in NBI-heated plasmas associated with transient reductions in DD neutron rate - "sea" of TAEs expected in ITER and future STs
- Change in beam-ion profile measured with Fast-ion D-alpha (FIDA)
- Modeled using NOVA and ORBIT codes
 - Mode structure obtained by comparing NOVA calculations with reflectometer data
 - Fast ion dynamics in the presence of TAEs calculated by guiding-center code ORBIT

IAEA: E. Fredrickson

IAEA: M. Podestà UCI

IAEA:G-Y. Fu

